

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Graphical methods for optimising academic programmes

Gabriel de Wet Alta de Waal

13 June 2018

Motivation

- Visual information is easier to digest and understand
- Relationships between factors simpler to evaluate graphically
- Techniques in institutional research not always suitable
- Interventions for factors outside of institutional control not readily apparent
- Shift focus to institutional variables which can more readily be addressed

Overview

- Sankey Diagrams
 - Analysis at academic programme level
 - Graphical representation of student flow
- Bayesian Networks
 - Analysis at course / module level
 - Graphical representation of inter module relationships

Sankey Diagrams

Visualising inter programme student flow

Setup

- Tracks cohort of students from a given base year until termination of studies
- Three implementations:
 - Tracking students from a specific programme
 - Tracking students given a specific module
 - Tracking students within a group of programmes (e.g. all students from the Faculty of Engineering)

Examples

• Single programme

• Multiple programmes

Sankey Diagram for students registered for BEng (Mechanical Engineering)

2011 cohort

Sankey Diagram for students registered for BSc (Physical Sciences - Extended programme)

2011 cohort

Examples

• Single programme

• Multiple programmes

Sankey Diagram for students registered for WTW 114 (2013 cohort)

Contains all students

Bayesian Networks Module level analysis

What are Bayesian Networks?

- Probabilistic Graphical Model
- Graphical / Visual representation of variables
- Variables represented as nodes
- Conditional dependencies represented via arcs
- Useful for inference and predictive modelling

Basic example

Application

- Data
 - 2011 Cohort All Engineering programmes
 - Format:

Student Number	Module 1 (mark)	Module 2 (mark)	 Outcome
	e.g. 78	e.g. 56	 Graduated

- Outcome:

- Graduated
- Not Graduated

Application

- Data (contd.)
 Module marks:
 0
 1 < 29
 30 < 49
 50 < 59
 60 < 74
 75+
- Objective
 - Identify conditional dependency structure between modules (unsupervised)
 - Identify relationship of outcome to modules (supervised)

Unsupervised

Unconnected
 Connected

C	C		C	C
BES 220 (S2)	EBN 122 (S2)	JPO 116 (S1)	MSD 210 (S1)	SWK 210 (S1)
BSS 310 (S1)	EIR 221 (S2)	JPO 120 (S2)	MTX 221 (S2)	WTW 158 (S1)
Ċ	Ċ	C	Ċ	Ċ
CHM 171 (S1)	FSK 116 (S1)	JPO 126 (S2)	NMC 113 (S1)	WTW 161 (S2)
Ċ	Ċ	Ċ	Ċ	Ċ
CHM 172 (S2)	FSK 176 (S2)	MGC 110 (S1)	NMC 123 (S2)	WTW 168 (S2)
•	•	•	•	
CIL 111 (S1)	IPI 410 (S1)	MIA 320 (S2)	SNV 111 (S1)	WTW 238 (S2)
•	<u> </u>	•	<u> </u>	•
CIL 121 (S2)	JCP 203 (Y)	MOW 217 (S1)	SNV 121 (S2)	WTW 256 (S1)
•	•	<u> </u>	_	<u> </u>
EBN 111 (S1)	JPO 110 (S1)	MPR 213 (S1)	SWK 122 (S2)	WTW 258 (S1)

-

WTW 263 (S2)

0

Target

Unsupervised

Unconnected
 Connected

Unsupervised

Clustered modules

Conclusion

- Current work
 - Add target variable to unsupervised structure
 - Evaluating performance of model
 - Test different target variable setups
 - Inferential analysis based on model
- Future work
 - Supervised methods
 - Comparison to other non-graphical methods

Acknowledgements

- Funding
 - NRF (Bursary)
 - Kresge foundation (Internship)
- Data
 - UP Bureau for Institutional Research & Planning (BIRAP)

