

APPLICATION OF ARTIFICIAL INTELLIGENCE TO FACILITATE PROGRAMME MANAGEMENT

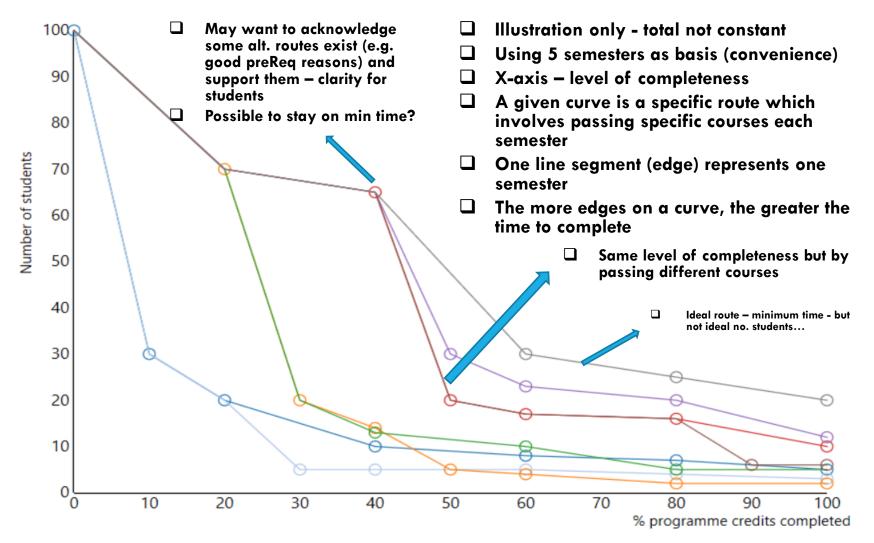
An Autoscholar Advisor component R Rawatlal, R Dhunpath, UKZN, June 2016

1. PROGRESSION

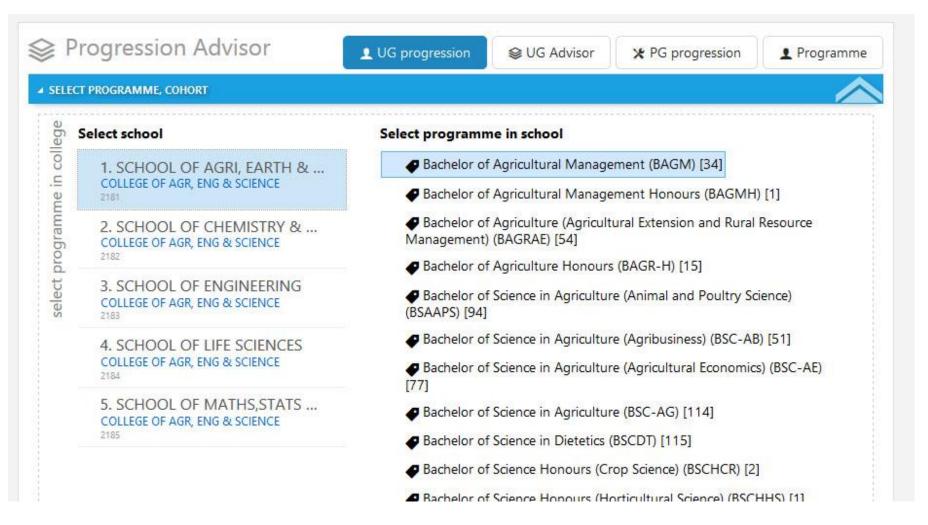
Original: Determine consistent way to identify programme "bottlenecks"

Not same as pass/fail rate – failing a course may or may not inhibit overall progression

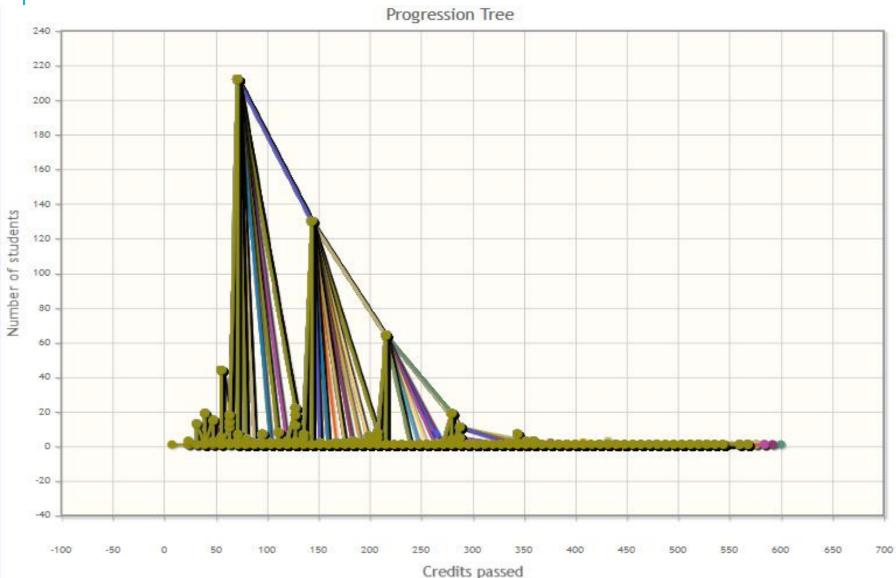
Identify specific courses with high failure AND which inhibit programme progression


Progression map – complicated by number of routes – variety of combinations of passing courses, presence of electives, and course equivalents

*Application


- Independent awareness of gatekeeper courses
- Examine curriculum design is the passage is students according to the plan?
- Track whether programme managers are acting on bottlenecks

Machine learning – student success


1. SCOPE CTD — PROGRESSION MAPPING (RR)

2. AUTOSCHOLAR ADVISOR

3. OUTCOMES: PROGRESSION MAPPING (RR)

Unexpected high level of complexity

Not suitable for identifying bottlenecks

3. OUTCOMES: STUDENT SUCCESS SIMPLER

- Every student was on minimum time up to some point
- Basis of calculation is tree can sort for max credits passed
- Becomes tracker of minimum time students
- Shift the attention to success orientation: What are the stumble points for otherwise successful students?
- Becomes possible to determine academic programme / curriculum structure

0_1|CHEM161_ENCH1EA_ENCH1TC_MATH131_MATH132_PHYS161; #: 212; c-cr: 72; s-cr: 72; drop: 0 0 2[CHEM171 ENCH1EB MATH141 MATH142 PHYS162; #: 130; c-cr: 144; s-cr: 72; drop: 29 0_2|CHEM171_MATH141_MATH142_PHYS162; #: 3; c-cr: 138; s-cr: 64; drop: 2 ▼ 0_2|CHEM171_ENCH1EB_MATH141_MATH142; #: 22; c-cr: 128; s-cr: 56; drop: 4 1_1|CHEM241_ENCH2MB_ENCH2OM_ENEL2CM_ENEL2EE_ENME1DR_MATH238; #: 4; c-cr: 200; s-cr: 72; drop: 0 1 1|CHEM241 ENCH20M ENEL2CM ENEL2EE ENME1DR MATH238; #: 1; c-cr: 192; s-cr: 64; drop: 0 1_1|CHEM241_ENCH2MB_ENCH2OM_ENEL2EE_ENME1DR_MATH238; #: 2; o-cr: 192; s-cr: 64; drop: 0 1_1|CHEM241_ENCH2MB_ENCH2OM_ENME1DR_MATH238_ZULN101; #: 1; c-cr: 192; s-cr: 64; drop: 0 1_1|CHEM241_ENCH2MB_ENCH2OM_ENEL2CM_ENME1DR_MATH238; #: 3; o-cr: 184; s-cr: 56; drop: 0 1_1[ENCH2MB_ENCH2OM_ENME1DR_MATH238_ZULM101; #: 1; c-cr: 184; s-cr: 56; drop: 0 1_1|CHEM241_ENCH2OM_ENME1DR_MATH238_ZULM101; #: 1; c-cr: 184; s-cr: 56; drop: 0 1 1|CHEM241 ENCH2OM ENEL2EE ENME1DR MATH238; #: 3; o-cr: 184; s-cr: 56; drop: 0 1_1|CHEM241_ENEL2CM_ENME1DR_MATH238; #: 1; c-cr: 168; s-cr: 40; drop: 0 1_1|CHEM241_ENME1DR_MATH238; #: 1; c-cr: 160; s-cr: 32; drop: 0 ▶ 0 2ICHEM171 ENCH1EB MATH141 PHYS162; #: 18; c-cr: 128; s-cr: 56; drop: 0 ▶ 0 2(CHEM171 ENCH1EB MATH142 PHYS162; #: 12; c-cr: 128; s-cr: 56; drop: 2 0 2|MATH141 MATH142 PHYS162; #: 1; c-cr: 120; s-cr: 48; drop: 0 0_2|CHEM171_MATH142_PHYS162; #: 3; c-cr: 120; s-cr: 48; drop: 1 0_2|CHEM171_MATH141_MATH142; #: 2; c-cr: 120; s-cr: 48; drop: 0 0 2|CHEM171 MATH141 PHYS162; #: 1; c-cr: 120; s-cr: 48; drop: 0 0_2|CHEM171_ENCH1EB_MATH142; #: 1; c-cr: 112; s-cr: 40; drop: 0 0_2(CHEM171_ENCH1EB_MATH141; #: 2; c-cr: 112; s-cr: 40; drop: 0 0 2|CHEM171 ENCH1EB PHYS162; #: 8; c-cr: 112; s-cr: 40; drop: 2 0_2[ENCH1EB_MATH141_MATH142; #: 1; c-cr: 112; s-cr: 40; drop: 0 0_2|CHEM171_PHYS162; #: 2; c-cr: 104; s-cr: 32; drop: 1 ▶ 0 2|CHEM171 MATH142; #: 2; c-cr: 104; s-cr: 32; drop: 0 0_2|CHEM171_MATH141; #: 2; c-cr: 104; s-cr: 32; drop: 0 ▶ 0_2|CHEM171; #: 2; c-cr: 88; s-cr: 16; drop: 0 0 1|CHEM181_ENCH1EA_ENCH1TC_MATH131_MATH132; #: 11; c-cr: 64; s-cr: 64; drop: 0 0_1|CHEM161_ENCH1EA_MATH131_MATH132_PHYS161; #: 14; c-cr: 64; s-cr: 64; drop: 0 0_1|CHEM161_ENCH1TC_MATH131_MATH132_PHYS161; #: 18; c-cr: 64; s-cr: 64; drop: 0 0_1/ENCH1EA_ENCH1TC_MATH131_MATH132_PHYS161; #: 3; c-cr: 56; s-cr: 56; drop: 0 0_1|CHEM161_ENCH1EA_ENCH1TC_MATH131_PHYS161; #: 5; c-cr: 56; s-cr: 56; drop: 0 0 1|CHEM161 ENCH1EA ENCH1TC MATH132 PHYS161; #: 44; c-cr: 56; s-cr: 56; drop: 1 0_1|CHEM161_MATH131_MATH132_PHYS161; #: 2; c-cr: 56; s-cr: 56; drop: 0 0_1|CHEM161_ENCH1TC_MATH132_PHYS161; #: 15; c-cr: 48; s-cr: 48; drop: 3 0 1|CHEM161 ENCH1TC MATH131 PHYS161; #: 3; c-cr: 48; s-cr: 48; drop: 1 0_1(ENCH1EA_ENCH1TC_MATH131_MATH132; #: 2; c-cr: 48; s-cr: 48; drop: 0 0_1|CHEM161_ENCH1EA_ENCH1TC_MATH131; #: 1; c-cr: 48; s-cr: 48; drop: 0 0_1|CHEM161_ENCH1EA_MATH132_PHYS161; #: 2; c-cr: 48; s-cr: 48; drop: 0 0 1ICHEM161 ENCH1EA ENCH1TC MATH132: #: 1: c-cr: 48: s-cr: 48: drop: 1

3. OUTCOMES: STUDENT SUCCESS SIMPLER

Progression	101150		JG progressio	₩ 00	Advisor	X PG progression	1 Programme
SELECT PROGRAMME, COL	HORT						
A PROGRESSION OBSTRUCT	IONS						N.
Top 5 areas inhibiting	progression	n					
Show 10 entries						Search:	
	Year 🕴	Semester 🕴	Num straight ‡ through	Course Code	Number failed	% of total in semester	
	1	1	389	MATH131	105	27	
	1	1	389	ENCH1EA	60	15	
	1	1	389	MATH132	51	13	
	2	2	89	ENCH2TD	50	56	
	2	1	<mark>159</mark>	ENCH2MB	38	24	
	1	2	239	MATH142	36	15	
	1	2	239	PHYS162	33	14	
	1	2	239	MATH141	31	13	
	2	2	89	ENCH2CP	29	33	
	2	2	89	ENCH2IT	27	30	
Showing 1 to 10 of 53	entries			Previous	1 2	3 4 5	6 Next

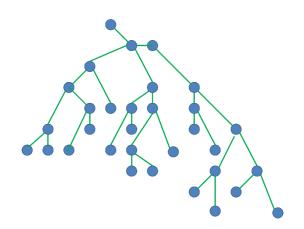
Major bottlenecks identified

Can sort by % or number

Transparency and exposure – avail to upper management and staff

Routes to be used for planning

4. DEDUCING CURRICULUM STRUCTURE


Time to graduate? Need curriculum structure

Such data structures not typically stored in systems

Tree sorting by credits passed – deduce curriculum

- Two schools of thought
- Include curriculum editor catch 10% error
- This IS the curriculum
- Notion of Designed / Operational / Experienced curriculum

With curriculum object defined, large amount of additional analysis and planning becomes possible - Experienced

▼ 0_1|CHEM161_ENCH1EA_ENCH1TC_MATH131_MATH132_PHYS161; #: 212; o-or: 72; s-or: 72; drop: 0 ▶ 0 2ICHEM171 ENCH1EB MATH141 MATH142 PHYS162; #: 130; c-cr: 144; s-cr: 72; drop; 29 ▶ 0 2ICHEM171 MATH141 MATH142 PHYS182; #: 3; o-cr: 138; s-cr: 64; drop: 2 ▼ 0_2|CHEM171_ENCH1EB_MATH141_MATH142; #: 22; c-cr: 128; s-cr: 58; drop: 4 ▶ 1_1|CHEM241_ENCH2MB_ENCH2OM_ENEL2CM_ENEL2EE_ENME1DR_MATH238; #: 4; o-or: 200; s-or: 72; drop: ▶ 1 1ICHEM241 ENCH2OM ENEL2CM ENEL2EE ENME1DE MATH238: # 1: o-or: 192: s-or: 84: drop: 0 ▶ 1 1ICHEM241 ENCH2MB ENCH2OM ENEL2EE ENME1DR MATH238: #: 2: o-cr: 192: s-cr: 64: drop: 0 1_1|CHEM241_ENCH2MB_ENCH2OM_ENME1DR_MATH238_ZULN101; #: 1; o-or: 192; s-or: 64; drop: 0 ▶ 1_1|CHEM241_ENCH2MB_ENCH2OM_ENEL2CM_ENME1DR_MATH238; #: 3; o-or: 184; s-or: 56; drop: 0 ▶ 1 11ENCH2MB ENCH2OM ENME1DR MATH238 ZULM101: #: 1: c-cr: 184: s-cr: 50: drop: 0 1_1|CHEM241_ENCH2OM_ENME1DR_MATH238_ZULM101; #: 1; o-or: 184; s-or: 56; drop: 0 1_1|CHEM241_ENCH2OM_ENEL2EE_ENME1DR_MATH238; #: 3; o-or: 184; s-or: 56; drop: 0 ▶ 1 11CHEM241 ENEL2CM ENME1DR MATH238; #: 1; o-or; 168; s-or; 40; drop; 0 1 11CHEM241 ENME1DR MATH238; #: 1; c-cr: 160; s-cr: 32; drop: 0 0 2ICHEM171 ENCH1EB MATH141 PHYS182 # 18: e-er 128: s-er 58: drop 0. 0 2|CHEM171 ENCH1EB MATH142 PHYS162; #: 12; c-cr: 128; s-cr: 56; drop: 2 0 2IMATH141 MATH142 PHYS162: #: 1: c-pr: 120: s-pr: 48: drop: 0. ▶ 0 2ICHEM171 MATH142 PHYS162; #: 3: c-cr: 120; s-cr: 48; drop: 1 ▶ 0 2ICHEM171 MATH141 MATH142; #: 2; o-or; 120; s-or; 48; drop; 0 ▶ 0 2ICHEM171 MATH141 PHYS162; #: 1: o-or: 120; s-or: 48; drop: 0 0 2|CHEM171 ENCH1EB MATH142; #: 1; o-cr: 112; s-cr: 40; drop: 0 0 2/CHEM171 ENCH1EB MATH141; #: 2; c-cr: 112; s-cr: 40; drop: 0 ▶ 0_2|CHEM171_ENCH1EB_PHYS162; #: 8; o-cr: 112; s-cr: 40; drop: 2 ▶ 0 2/ENCH1EB MATH141 MATH142: #: 1: c-cr: 112: s-cr: 40: drop: 0 ► 0 2ICHEM171_PHYS162; #: 2; c-cr: 104; s-cr: 32; drop: 1 0_2|CHEM171_MATH142; #: 2; o-cr: 104; s-cr: 32; drop: 0 ▶ 0_2|CHEM171_MATH141; #: 2; c-cr: 104; s-cr: 32; drop: 0 ▶ 0_2|CHEM171; #: 2; o-or: 88; s-or: 16; drop: 0 0_1|CHEM181_ENCH1EA_ENCH1TC_MATH131_MATH132; #: 11; o-or: 64; s-or: 64; drop: 0 ▶ 0 1ICHEM161 ENCH1EA MATH131 MATH132 PHYS161: #: 14: o-or: 64: s-or: 64: drop: 0 0_1|CHEM181_ENCH1TC_MATH131_MATH132_PHYS181; #: 18; o-or: 64; s-or: 64; drop: 0 0_1|ENCH1EA_ENCH1TC_MATH131_MATH132_PHYS161; #: 3; c-cr: 56; s-cr: 56; drop: 0 ▶ 0 1ICHEM161 ENCH1EA ENCH1TC MATH131 PHYS161: #: 5: c-cr: 56: s-cr: 56: drop: 0 ▶ 0 1ICHEM161 ENCH1EA ENCH1TC MATH132 PHYS161: #: 44: o-cr: 58: s-cr: 58: drop: 1 ▶ 0 11CHEM161 MATH131 MATH132 PHYS161: #: 2: c-cr: 56: s-cr: 56: drop: 0 ▶ 0 1/CHEM161 ENCH1TC MATH132 PHYS161: #: 15: o-or: 48: s-or: 48: drop: 3 ▶ 0_1|CHEM161_ENCH1TC_MATH131_PHYS161; #: 3; c-cr: 48; s-cr: 48; drop: 1 ▶ 0_1/ENCH1EA_ENCH1TC_MATH131_MATH132; #: 2; o-or: 48; s-or: 48; drop: 0 ▶ 0 1|CHEM161 ENCH1EA ENCH1TC MATH131; #: 1; c-cr: 48; s-cr: 48; drop: 0 ▶ 0_1|CHEM161_ENCH1EA_MATH132_PHYS161; #: 2; c-cr: 48; s-cr: 48; drop: 0 0 1|CHEM161 ENCH1EA ENCH1TC MATH132; #: 1; o-or: 48; s-or: 48; drop: 1

5. CURRICULUM STRUCTURE - STUDENT ADVICE

Vou have

2	80	240	Green	Continue. (Passed 80 > 70% of 72 Cr)	You have passed a full load of credits. Keep it up!
3	48	288	Orange	RISK (Passed 288 > 75% of 288)	You need to pass at least 50 credits next semester to get back in the green.
4	64	352	Green	Continue rehabilitated (Passed 64 credits)	Although you have been rehabilitated, you must continue to work hard to pass courses. Ensure that you pass at least 72 credits next semester.
5	48	400	Orange	RISK (Passed 400 > 75% of 432)	You need to pass at least 50 credits next semester to get back in the green.
				Continue	Although you have been rehabilitated, you must continue to

1.	CHEM161	16	1, 1	2011, 1	75	1	0	0	26.	CHEM261	8	3, 1	2013, 1	57	1	2	0
2.	ENCH1EA	8	1, 1	2011, 1	60	1	0	0	27.	ENCH3FM	8	3, 1	2014, 1	71	1	3	1
3.	ENCH1TC	8	1, 1	2011, 1	70	1	0	0	28.	ENCH3HE	16	3, 1	-	-	0	-1	
4.	MATH131	16	1, 1	2011, 1	69	1	0	0	29.	ENCH3MP	8	3, 1	2016, 1	50	1	5	3
5.	MATH132	16	1, 1	2011, 1	53	1	0	0	30.	ENCH3SL	8	3, 1	2013, 1	75	1	2	0
6.	PHYS161	8	1, 1	2011, 1	57	1	0	0	31.	MATH354	8	3, 1	2014, 1	50	1	3	1
7.	CHEM171	16	1, 2	2011, 2	52	1	0	0	32.	STAT370	8	3, 1	2014, 1	58	1	3	1
8.	ENCH1EB	8	1, 2	2011, 2	55	1	0	0	33.	ENCH2TD	8	3, 2	2013, 2	58	1	2	0
9.	MATH141	16	1, 2	2011, 2	57	1	0	0	34.	ENCH3CP	8	3, 2	2013, 2	73	1	2	0
10.	MATH142	16	1, 2	2011, 2	50	1	0	0	35.	ENCH3MT	16	3, 2	-	-	0	-1	
11.	PHYS162	16	1, 2	2011, 2	59	1	0	0	36.	ENCH3PO	16	3, 2	-	-	0	-1	
12.	CHEM241	8	2, 1	2013, 1	60	1	2	1	37.	ENCH3RT	16	3, 2	2014, 2	52	1	3	1
13.	ENCH2MB	8	2, 1	2012, 1	50	1	1	0	38.	ENCH3TH	8	4, 1	5		0	-1	
14.	ENCH2OM	8	2, 1	2012, 1	50	1	1	0	39.	ENCH4DC	16	4, 1	4	-	0	-1	
15.	ENEL2CM	8	2, 1	2012, 1	70	1	1	0	40.	ENCH4ML	8	4, 1	2014, 1	58	1	3	0
16.	ENEL2EE	16	2, 1	2012, 1	54	1	1	0	41.	ENCH4MT	8	4, 1	-	-	0	-1	
17.	ENME1DR	8	2, 1	2012, 1	78	1	1	0	42.	ENCH4RT	8	4, 1	-	-	0	-1	
18.	MATH238	16	2, 1	2012, 1	50	1	1	0	43.	ENCH3EC	8	4, 2	-	-	0	-1	
19.	CHEM251	8	2, 2	2013, 2	60	1	2	1	44.	ENCH4PE	8	4, 2	-	-	0	-1	
20.	ENCH2CP	8	2, 2	2012, 2	50	1	1	0	45.	ENEL4EB	8	4, 2	2014, 2	55	1	3	0
21.	ENCH2EF	16	2, 2	2012, 2	57	1	1	0	46.	MGNT102	16	4, 2	2	-	0	-1	
22.	ENCH2IT	8	2, 2	2012, 2	74	1	1	0	47.	ENCH4LA	16	5, 1	-	-	0	-1	
23.	ENCH2MS	8	2, 2	2012, 2	50	1	1	0	48.	ENCH4PP	8	5, 1	-	-	0	-1	
24.	ENCH2WS	0	2, 2	-		0	-1		49.	ENCH4BG	8	5, 2	-	-	0	-1	
25.	MATH248	16	2, 2	2013, 2	50	1	2	1	50.	ENCH4DP	32	5, 2	-	-	0	-1	
26.	CHEM261	8	3, 1	2013, 1	57	1	2	0	51.	ENCH4VW	0	5, 2	2015, 2	null	1	4	0

6.1 DEDUCING CURRICULUM — STUDENT ADVICE

STUDENT RECORDS

▲ STUDENT ADVICE

to society.

Core credit weighted average: 58.4. Estimated year of study: 3.

Extra time taken to complete courses: CHEM241[1], CHEM251[1], MATH248[1], ENCH3FM[1], ENCH3MP[3], MATH354[1], STAT370[1], ENCH3RT[1] Extra time: 0.04 years. Your study is subsidised by the government. By taking this extra time to complete, you have cost both the State and the University an additional **2000 ZAR**. This is also an estimated loss of earnings to you of 9600 ZAR. More importantly, this is the loss of time that a graduate with the skills that you are studying toward could have been contributing

Please avoid further losses by passing all your courses within the minimium possible time.

1.	CHEM161	16	1, 1	2011, 1	75	1	0	0
2.	ENCH1EA	8	1.1	2011 1	60	1	0	0

6.2 EXTENSION 5 — MACHINE LEARNING

With curriculum object, can develop student model of success

Predictive model – performance and bio data – predict likelihood of success

From biodata and other metrics consider admissions policy

In programme, given profile of results, determine whether additional support etc. required

Can perform curriculum design and evaluate likely throughput

6.5 MACHINE LEARNING - CROSS CORRELATING COURSES

	CHEM241	ENCH2MB	ENCH2OM	ENEL2CM	ENELZEE	ENMETDR	MATH238	CHEM251	ENCH2CP	ENCHZEF	ENCH2IT	ENCH2MS
CHEM161	0.05	0.52	0.44	0.27	0.33	0.33	0.37	0.49	0.41	0.22	0.24	0.51
ENCH1EA	0.34	0.38	0.44	0.24	0.25	0.26	0.34	0.12	0.3	0.31	0.19	0.34
ENCH1TC	0.25	0.15	0.39	0.19	0.23	0.19	0.35	0.49	0.05	0.45	0.23	0.28
MATH131	0.24	0.25	0.3	0.15	0.17	0.22	0.2	-0.51	-0.05	0.14	0.1	0.32
MATH132	0.42	0.39	0.49	0.33	0.46	0.26	0.51	0.35	0.25	0.33	0.32	0.4
PHYS161	0.49	0.38	0.41	0.42	0.49	0.4	0.52	0.39	0.31	0.22	0.49	0.38
CHEM171	0.43	0.11	0.47	0.33	0.36	0.09	0.41	0.4	0.18	0.17	0.22	0.53
ENCH1EB	0.28	0.45	0.5	0.27	0.22	0.44	0.46	-0.08	0.3	0.28	0.26	0.32
MATH141	0.27	0.36	0.48	0.28	0.35	0.46	0.38	-0.12	0.49	0.4	-0.06	0.42
MATH142	0.49	0.47	0.4	0.43	0.57	0.25	0.53	0.5	0.3	0.42	0.46	0.42
PHYS162	0.51	0.46	0.5	0.47	0.56	0.25	0.51	0.46	0.43	0.39	0.42	0.49

6.5 MACHINE LEARNING – CASE STUDY

Reactors 3	Reactors 2	Maths1	Economics 1	Psychology 1
Failed	40-60	Passed	0-40	40-55
Failed	0-40	Passed	60-80	40-55
Passed	40-60	Failed	60-80	40-55
Passed	60-100	Failed	40-60	70-85
Passed	40-60	Failed	40-60	55-70
Failed	0-40	Failed	0-40	70-85
Failed	0-40	Failed	40-60	70-85
Failed	40-60	Passed	60-80	55-70

6.5 MACHINE LEARNING — MACHINE LOGIC

7. WHAT TO DO WITH IT?

Data-driven curriculum (re-)design

Provide customised student advice – but requires careful treatment

>Monitoring of programme revision follow-through

Discipline specific advice

Robot system gives summative status – not predictive

CONCLUSION

Progression tree can identify major gatekeepers in curriculum

Progression tree generation leads to deducing the 'Experienced' curriculum

With curriculum known can provide advice:

Students – rate of progression

Programme advisors – course cross-correlation

*May also apply Machine Learning to curriculum – develop predictive models

What can we do with the Machine Learning results

Student advising – but handle with care

Programme advising – curriculum (re-)design

Cannot ignore situation where we know so much

ACKNOWLEDGEMENTS

Implementation of the Autoscholar at UKZN would not have been possible without the support of the following people

Rubby Dhanpath, UTLO

- Bala Pillay, CAES
- Deogratius Jaganyi, CAES
- Vic Borden, Indiana University
- ✤Lennard Wood, II
- Naveena Moodley, II
- Riaz Essay, ICS
- Heli Guy, ICS
- Logini Govender, Corp Relations

To implement the autoscholar at your institution, please contact rawatlalr@ukzn.ac.za